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Stability of convective flows in cavities: Solution of benchmark
problems by a low-order finite volume method
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SUMMARY

A problem of stability of steady convective flows in rectangular cavities is revisited and studied by a
second-order finite volume method. The study is motivated by further applications of the finite volume-
based stability solver to more complicated applied problems, which needs an estimate of convergence of
critical parameters. It is shown that for low-order methods the quantitatively correct stability results for the
problems considered can be obtained only on grids having more than 100 nodes in the shortest direction,
and that the results of calculations using uniform grids can be significantly improved by the Richardson’s
extrapolation. It is shown also that grid stretching can significantly improve the convergence, however
sometimes can lead to its slowdown. It is argued that due to the sparseness of the Jacobian matrix and
its large dimension it can be effective to combine Arnoldi iteration with direct sparse solvers instead of
traditional Krylov-subspace-based iteration techniques. The same replacement in the Newton steady-state
solver also yields a robust numerical process, however, it cannot be as effective as modern preconditioned
Krylov-subspace-based iterative solvers. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The present study is devoted to analysis of stability of steady buoyancy convection flows by a low-
order finite volume method. We consider several benchmark problems, part of which are widely
known, and another part is added here to complete the study. The motivation for this work is the
necessity to perform the stability analysis for many applied problems, which cannot be treated by
spectral of pseudospectral methods. Clearly, before complicated applied problems are considered
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one needs an estimation of convergence of critical parameters. This can be gained from the study
of several benchmark problems, for which the accurate and validated data is already established.

It is well known that spectral and pseudospectral methods yield the most accurate solutions for
benchmark problems considering flows in rectangular cavities, and especially instabilities of these
flows. We can cite, for example, results of Botella and Peyret [1] for the lid-driven cavity, results
of Le Quéré [2] for the test problem of convection of air in a square cavity [3], results of Le
Quéré [4] and Pulicani et al. [5] for the benchmark on convection of a low Prandtl number fluid in
a horizontally elongated cavity [6], and results of Xin and Le Quéré [7] on the recent benchmark
of convection of air in a tall rectangular cavity [8]. Many benchmark-quality results were obtained
also by Gelfgat and co-authors in References [9–13] using a global Galerkin method. However,
these methods are restricted to simple geometries and because of this cannot be applied to many
practically important problems. As an example one can mention problems of melt instabilities in
bulk crystal growth processes, which was the motivation for the benchmark [6].

Here we apply the second-order finite volume method to several problems of buoyancy and
thermocapillary convection in rectangular cavities. It is emphasized that the numerical technique
briefly described below is not restricted to a certain class of problems and already was applied
for stability studies in Reference [14] and floating zone [15] crystal growth configurations. The
studies of this kind usually have two main bottlenecks. The first one is connected with the
calculation of steady-state flows, whose stability is to be studied. The Jacobian-free [16–19] or
other inexact [20–22] and exact [23–26] Newton methods combined with a Krylov-subspace-based
iterative linear solver [27] usually are applied for this purpose. These solvers are very effective
when relatively simple benchmark problems are considered, however fail to converge in more
complicated cases. There were also some reports about possible loss of accuracy when Jacobian-
free approach is applied (see, e.g. Reference [28]). Therefore in the present study we calculate the
Jacobian matrix using the corresponding analytical evaluations, which follow from the discretized
equations, as it was done in References [23–26]. We also argue that when very fine grids are used
and due to the high level of the sparseness of the Jacobian matrix it is possible to replace iterative
solvers by direct ones, which can be slower but do not have a problem of divergency.

The second bottleneck is connected with the eigenvalue problem of very large dimension, which
must be solved for the study of linear stability of a steady flow. The usual approach here is the
Arnoldi iteration method, which allows one to calculate only necessary part of the whole spectrum.
The Arnoldi iteration also needs computation of the Krylov-subspace basis. An additional difficulty
here is connected with the incompressible continuity equation, which does not contain the time
derivative. The latter requires considering the eigenvalue problem in the shift-and-invert mode [29]
or use of the Cayley transformation [24–26]. Consequently, the Krylov basis vectors are to be
computed as solutions of a system of linear algebraic equations. Again, we argue here that instead
of iterative solvers, which can diverge and be CPU-time consuming, it can be more effective to built
an LU-decomposition of the matrix, so that the necessary amount of the Krylov basis vectors will
be computed by the back substitution. It can be expected that the two back-substitution procedures
needed to extricate a solution from the already computed LU-decomposition will be faster than
an iterative solver. The crucial question is how effective the initial LU-decomposition can be
computed.

The effectiveness of the application of the direct sparse matrix solvers described here is the
consequence of the matrix sparseness, which follows from the low-order discretization method
applied. As reported below, we were able to perform calculations of steady states and stability
analysis on the grids consisting of 4502 nodes. The only restriction for the further grid refinement
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STABILITY OF CONVECTIVE FLOWS IN CAVITIES 487

is the computer memory consumed by a direct sparse matrix solver. The results reported here are
obtained on an Itanium-2 workstation with 16Gbytes memory.

The convergence studies reported below show that correct critical parameters can be calculated
only on rather fine grids having more than 100 nodes in the shortest direction. We show that use
of uniform grids combined, where possible, with the Richardson extrapolation can significantly
improve results. We show also that the mesh stretching can significantly speed up the convergence,
but there can be also a certain loss of accuracy.

2. FORMULATION OF THE PROBLEMS AND NUMERICAL METHOD

We study stability of steady convective flows of a Boussinesq fluid with kinematic viscosity �∗
and thermal diffusivity �∗ in a cavity of length L∗ and height H∗. The vertical boundaries of the
cavity have constant temperatures �∗hot and �∗cold, while the horizontal ones are perfectly thermally
insulated or are perfectly conducting. The vertical and lower boundaries are no-slip. The upper
boundary can be no-slip or stress-free or account for the effect of thermocapillarity. The flow is
described by the momentum, continuity and energy equations in a Cartesian coordinate system
(x∗, y∗). To render the equations dimensionless we use the scales D∗ =Min(H∗, L∗), D∗2/�∗,
�∗/D∗, �∗(�∗/D∗)2 for length, time, velocity and pressure, respectively. The temperature is ren-
dered dimensionless by the relation �= (�∗−�∗cold)/(�∗hot−�∗cold). The set of Boussinesq equations
for the non-dimensional velocity v={vx , vy}, temperature � and pressure p in the rectangular
domain 0�x�Ax , 0�y�Ay , reads

�v
�t
+ (v · ∇)v= −∇ p + �v+ Gr � ey (1)

��

�t
+ (v · ∇)�= 1

Pr
�� (2)

∇ · v= 0 (3)

Here Ax = L∗/D∗, Ay = H∗/D∗ are the aspect ratios of the cavity (apparently, one of them is ex-
actly one), Gr= g∗�∗(�∗hot−�∗cold)D∗3/�∗2 the Grashof number, Pr= �∗/�∗ the Prandtl number, g∗
gravity acceleration, �∗ the thermal expansion coefficient, and ey the unit vector in the y-direction.

The vertical and lower boundaries are no-slip

vx = vy = 0 at x = 0 and Ax , and y= 0 (4)

The upper boundary can be either no-slip

vx = vy = 0 at y= Ay (5a)

or to be a ‘free’ surface with the thermocapillary force acting along it

vy = 0,
�vx

�y
= −MaPr

��

�x
at y= Ay (5b)

Here Ma= − �∗(�∗hot − �∗cold)D∗/�∗�∗�∗ is the Marangoni number, where �∗ is the density and
�∗ = ��∗/��∗ describes the dependence of the surface tension �∗ on the temperature, assuming
that the dependence is linear. Apparently, Ma= 0 corresponds to the stress-free boundary.
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Constant temperatures are prescribed at the vertical boundaries

�= 1 at x = 0 and �= 0 at x = Ax (6)

while the horizontal boundaries can be perfectly insulated

��/�y= 0 at y= 0 and Ay (7a)

or perfectly conducting

�= 1− x/Ax at y= 0 and Ay (7b)

Problems (1)–(7) is solved by a standard finite volume method as described in Reference [30].
Non-linear terms are approximated by the conservative central differencing scheme, for which
we have several reasons. First, stability studies usually require conservative schemes, so that no
artificial viscosity appears. Second, with the mesh refinement the grid Reynolds and Peclet numbers
decrease, so that the conservative scheme satisfies the three conditions of Patankar [30]. Third, the
issues of numerical stability of a straightforward time integration are not relevant for this study
because steady state are calculated by the Newton iteration (see below).

The finite volume grid is staggered and can be uniform or stretched. The effect of stretch-
ing is also discussed below. The scalar variables � and p, as well as divergence of velocity,
are calculated at the nodes with integer indices [xi , y j ]. The components of velocity u= vx
and w= vy are calculated in the points [xi+1/2, y j ] and [xi , y j+1/2], respectively, where
xi+1/2= (xi + xi+1)/2 and y j+1/2= (y j + y j+1)/2. Denoting by square brackets with subscripts
[•]i, j approximation of a term in the appropriate grid node, the resulting system of steady
equations reads

[
u

�u
�x

]
i+1/2, j

+
[
w

�u
�y

]
i+1/2, j

= −
[
�p
�x

]
i+1/2, j

+
[

�2u
�x2
+ �2u

�y2

]
i+1/2, j

(8a)

[
u

�w

�x

]
i, j+1/2

+
[
w

�w

�y

]
i, j+1/2

=−
[
�p
�y

]
i, j+1/2

+
[

�2w
�x2
+ �2w

�y2

]
i, j+1/2

+ Gr

2
(�i j + �i, j+1) (8b)

[
�u
�x

]
i, j
+

[
�w

�y

]
i, j
= 0 (8c)

[
u

��

�x

]
i, j
+

[
w

��

�y

]
i, j
= 1

Pr

[
�2�
�x2
+ �2�

�y2

]
i, j

(8d)

The indices i and j vary from 1 to Nx and Ny , respectively. Equations (8) are used for cal-
culation of steady-state flows. Assuming that {ũ(x, y), w̃(x, y), �̃(x, y), p̃(x, y)}e�t is an infinite-
simally small perturbation, the linear stability eigenproblem written for a calculated steady-state
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U,W, T, P reads

�ũi+1/2, j =−
[
U

�ũ
�x

]
i+1/2, j

−
[
ũ

�U
�x

]
i+1/2, j

−
[
W

�ũ
�y

]
i+1/2, j

−
[
w̃

�U
�y

]
i+1/2, j

−
[
� p̃
�x

]
i+1/2, j

+
[

�2ũ
�x2
+ �2ũ

�y2

]
i+1/2, j

(9a)

�w̃i, j+1/2 =−
[
U

�w̃

�x

]
i, j+1/2

−
[
ũ

�W
�x

]
i, j+1/2

−
[
W

�w̃

�y

]
i, j+1/2

−
[
w̃

�W
�y

]
i, j+1/2

−
[
� p̃
�y

]
i, j+1/2

+
[

�2w̃
�x2
+ �2w̃

�y2

]
i, j+1/2

+ Gr

2
(�̃i j + �̃i, j+1) (9b)

0=
[
�ũ
�x

]
i, j
+

[
�w̃

�y

]
i, j

(9c)

��̃i, j = −
[
U

��̃

�x

]
i, j

−
[
u

�T
�x

]
i, j
−

[
W

��̃

�y

]
i, j

−
[
w

�T
�y

]
i, j
+ 1

Pr

[
�2�̃
�x2
+ �2�̃

�y2

]
i, j

(9d)

These equations can be written in the matrix form as

�B

⎛
⎜⎜⎜⎜⎜⎜⎝

ũ

w̃

p̃

�̃

⎞
⎟⎟⎟⎟⎟⎟⎠
= J

⎛
⎜⎜⎜⎜⎜⎜⎝

ũ

w̃

p̃

�̃

⎞
⎟⎟⎟⎟⎟⎟⎠

(10)

where J is the Jacobian matrix calculated from the r.h.s. of (9) and B is the diagonal matrix
such that its diagonal elements corresponding to the values of ũ, w̃, �̃ are equal to one, while the
elements corresponding to p̃ are zeros. This necessarily yields detB= 0, so that the generalized
eigenproblem (10) cannot be transformed into a standard eigenproblem. Apparently, Real(�)>0
means instability of the steady flow state.

Considering the linear stability of steady-state flows, we are looking for the values of the
Grashof or Marangoni numbers, for which the real part of at least one eigenvalue � changes its
sign from negative to positive. This eigenvalue is called ‘leading’ and the corresponding values
of the governing parameters are called critical and are denoted as Grcr and Macr. The imaginary
part 	cr= Im(�) of the leading eigenvalue corresponding to Real(�)= 0 yields the frequency of
the most unstable perturbation at the critical point and is called ‘critical frequency’. The spatial
pattern of the most unstable perturbation is yielded by the eigenvector of (10). Since the eigenvector
is complex and is defined to within a multiplication by a complex constant, we usually plot its
absolute value, whose pattern is constant independent.
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The eigenproblem (10) is solved by the Arnoldi iteration in the shift-and-invert mode

(J− 
B)−1B

⎛
⎜⎜⎜⎜⎜⎜⎝

ũ

w̃

p̃

�̃

⎞
⎟⎟⎟⎟⎟⎟⎠
= �

⎛
⎜⎜⎜⎜⎜⎜⎝

ũ

w̃

p̃

�̃

⎞
⎟⎟⎟⎟⎟⎟⎠

, �= 1

�− 

(11)

where 
 is a complex shift. The ARPACK package [29]‡ is used. This approach succeeds when
the shift 
 is chosen close to the leading eigenvalue �. It is an easy task for benchmark problems
considered here, where the estimate of � is known. However, it is an additional difficulty for each
new problem where no information on the stability properties of the flow is available.

The computational process proceeds as follows. At the first stage we apply Jacobian-full exact
Newton iteration to calculate a steady flow state. Then the linear stability of the calculated steady
flow is studied by applying the shift-and-invert Arnoldi iteration to the corresponding eigenvalue
problem with the secant method used for the calculation of a critical parameter value. The key
issue for the effectiveness of both Newton and Arnoldi iteration techniques is a fast solution of
the systems of linear algebraic equation, which is needed at every Newton iteration, as well as for
building the Krylov basis for the Arnoldi iteration. The traditional approach here is application
of modern Krylov-subspace-based iteration methods like preconditioned GMRES and BiCGstab
[24–27]. Studies [24–26] reported several hours of computations on massively parallel computers
needed to calculate a critical value. Here we describe another approach, which is based on the fact
that the matrix (J−
B)−1 remains unchanged during the whole Arnoldi iteration process. Thus, if
it was computed the calculation of a next vector of the Krylov basis is reduced to a single matrix–
vector multiplication, which is expected to be much faster than any iterative solver. The calculation
of the inverse matrix (J− 
B)−1 is possible, but requires too many arithmetic operations and too
much memory to store the result. Instead of that one can calculate the LU-decomposition of the
matrix (J− 
B), which is much faster, and due to the high level of sparseness of (J− 
B) does
not require too much memory to be stored. Then the next vector of the Krylov basis is calculated
by two back substitutions, which consumes the CPU time comparable with the matrix–vector
multiplication. Apparently, the two back substitutions always require the same CPU time to be
completed, and are expected to be much faster than any iterative solver. Then, the efficiency of the
whole approach is defined by a possibility of an efficient computations of the LU-decomposition.
This can be achieved by use of modern multifrontal direct solvers for sparse matrices (we use the
MUMPS solver§ ). The characteristic times and comparison with Reference [25] are reported in
Appendix A.

A more unexpected observation was that the multifrontal direct solver was rather efficient also
for the Newton iteration. In this case the LU-decomposition must be performed at every iteration,
and therefore can be expected to be slower than a modern preconditioned iterative technique. On the
other hand, in the computations described below the calculation of a steady-state was significantly
faster than the forthcoming eigenvalue computation (see Appendix A), so that further improvement

‡See http://www.caam.rice.edu/software/ARPACK/
§See http://www.enseeiht.fr/apo/MUMPS/ or http://grall.ens-lyon.fr/MUMPS/
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of the Newton iteration linear solver was not very significant. The explanation for that may be
connected with a very large level of sparseness of the matrices produced by the second-order
finite volume method we use. It is clear that the effectiveness of a sparse matrix direct solver
reduces rapidly with the decrease of the sparseness. Therefore the observed efficiency of the direct
solver described here may disappear when higher-order methods leading to denser matrices are
applied.

It is difficult to present exact CPU-times, since they are always problem dependent, i.e. different
problems need different number of Newton and Arnoldi iterations. We can stay that calculation of
critical Grashof number, which includes four to six solutions for steady-state flows followed by
solution of the eigenvalue problem, using the grid 450× 450 consumes less than 2 CPU hours on
Itanium-2 personal workstation. In fact, further grid refinement is restricted by available computer
memory, which is needed for the direct solver producing the LU decompositions. More details on
the consumed memory and CPU time, regarding one of the problems considered below, are given
in Appendix A.

3. RESULTS

List of the benchmark problems considered and comparison with the independent data are shown
in Table I. We usually compare with results of the global Galerkin method [12], for which the
convergence to within several decimal digits can be established. The details and comparison with
the results of other authors can be found in References [9–13].

3.1. Buoyancy convection benchmarks

First we consider several benchmark problems dealing with buoyancy convection in rectangular
cavities. These are problems 1–7 with the boundary conditions and parameters shown in Table I.
Problems 4–7 are well-known benchmarks formulated in References [3, 6, 8]. We add also problems
of convection of a low-Prandtl-number fluid in a square cavity (problems 1 and 2) and the problem
of convection of air in a square cavity with perfectly conducting horizontal walls (problem 3).

To illustrate the convergence and the importance of the Richardson extrapolation we show the
results obtained for problem 2 in Table II. The results are reported for the uniform grids with
number of nodes gradually increased by an increment 10. The results are compared with the result
of Reference [10] (the last row of Table II) obtained by the global Galerkin method and converged
at least to within the fourth decimal digit. It is seen that with the use of 2002 nodes we obtain
three correct digits in the critical Grashof number and two correct digits in the critical frequency.
However, even with the grid of 4502 nodes we still do not obtain the correct fourth digit of the
critical parameters. At the same time, applying the Richardson extrapolation for two consequent
grids we observe a very good agreement with the results of Reference [10] already starting from
the grid with 1002 nodes. The Richardson extrapolation using 1902 and 2002 grids already yields
four correct decimal digits in both critical Grashof number and critical frequency.

Figure 1 shows the convergence of the critical parameters for problems 1–4 comparing to the
result of the Richardson extrapolation based on 4402 and 4502 nodes. The fastest convergence is
observed for the problem 3, which was observed also for the convergence of the global Galerkin
method reported in Reference [13]. The replacement of the perfectly conducting horizontal walls
of the problem 3 by the perfectly insulated ones of the problem 4 leads to a development of
very thin thermal boundary layers along the vertical boundaries, which drastically slows down the
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Table II. Convergence of critical Grashof number and critical frequency for the problem 2.

N = Nx × Ny Grcr 	cr/
√
Grcr 	cr

50 3 014 437 4.78819 8313.32
60 2 984 090 4.86574 8405.33
70 2 961 670 4.91382 8456.44
80 2 947 121 4.96442 8522.51
90 2 937 725 4.96584 8511.35
100 2 931 324 4.98066 8527.44
Richardson, 90.100 2 904 036 5.04384 8596.06
110 2 926 929 4.99143 8539.47
120 2 923 709 4.99954 8548.64
130 2 921 275 5.00582 8555.82
140 2 919 384 5.01076 8561.49
150 2 917 886 5.01473 8566.07
160 2 916 678 5.01797 8569.83
170 2 915 687 5.02064 8572.94
180 2 914 865 5.02288 8575.55
190 2 914 174 5.02477 8577.76
200 2 913 589 5.02639 8579.66
Richardson, 190.200 2 908 174 5.04139 8597.29
210 2 913 087 5.02777 8581.28
220 2 912 655 5.02896 8582.68
230 2 912 280 5.03001 8583.92
240 2 911 951 5.03093 8585.01
250 2 911 662 5.03173 8585.94
260 2 911 406 5.03245 8586.79
270 2 911 179 5.03309 8587.55
280 2 910 976 5.03366 8588.22
290 2 910 794 5.03417 8588.82
300 2 910 615 5.03465 8589.38
Richardson, 290.300 2 908 063 5.04149 8597.29
310 2 910 447 5.03507 8589.85
320 2 910 345 5.03545 8590.34
330 2 910 223 5.03580 8590.76
340 2 910 110 5.03611 8591.12
350 2 910 011 5.03640 8591.47
360 2 909 917 5.03666 8591.78
370 2 909 832 5.03691 8592.08
380 2 909 753 5.03713 8592.34
390 2 909 679 5.03734 8592.58
400 2 909 613 5.03753 8592.81
Richardson, 390.400 2 908 341 5.04121 8597.21
410 2 909 558 5.03770 8593.00
420 2 909 499 5.03786 8593.20
430 2 909 445 5.03801 8593.38
440 2 909 396 5.03815 8593.56
450 2 909 349 5.03829 8593.72
Richardson, 440.450 2 908 327 5.04121 8597.19
Result of Reference [10] 2 908 332 5.04121 8597.19
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Figure 1. Convergence of the critical Grashof number and critical frequency for convection in a square
cavity with different Prandtl numbers and boundary conditions. The subscript R stays for the Richardson

extrapolation from the two finest grids.

convergence. This is also similar to the observations of Reference [13] made for the convergence
of the global Galerkin method. For the flows with a small Prandtl number, i.e. problems 1 and
2, we observe that the convergence for Pr= 0 is significantly slower than that for Pr= 0.015, in
spite of the lower value of the critical Grashof number for Pr= 0 (Table I). The explanation of
that also is connected with the boundary layers, which develop near the no-slip walls in the case
Pr= 0. With the increase of the Prandtl number the temperature gradient near the walls decreases
and these boundary layers smear out, which yields a smoother spatial pattern of the most unstable
perturbation. Consequently, a faster convergence of the stability parameters is observed. The
corresponding perturbation patterns are reported in Reference [12].

For the calculations in elongated cavities with Ax �= Ay we usually use grids with Nx =
(Ax/Ay)Ny to keep the finite volume square or at least close to the square shape. Figure 2
shows the convergence of the critical parameters for the benchmark problem of Reference [6]. For
horizontally elongated cavities with Ax = 4 and Ay = 1 the convergence of the critical Grashof
number is similar for a no-slip or stress-free upper surface (Figure 2(a)). At the same time
the convergence of the critical frequency is slightly slower for the stress-free upper boundary
(Figure 2(b)). Note, that to obtain the convergence to within 1% error one needs calculations using
Nx>350 (see Figure 2(a)). As above, the use of Richardson extrapolation can significantly improve
the result already starting with Nx = 200. Thus, the values of critical Grashof number for problem
5 calculated on the grids 200× 50 and 240× 60 are 1.361× 105 and 1.348× 105, respectively.
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Figure 2. Convergence of the critical Grashof number and critical frequency for convection in a cavity
Ax = 4, Ay = 1 for different boundary conditions. Pr= 0.015. The subscript R stays for the Richardson

extrapolation from the two finest grids.
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Figure 3. Convergence of the critical Grashof number and critical frequency for con-
vection of air (Pr= 0.71) in a cavity Ax = 1, Ay = 8. The subscript R stays for the

Richardson extrapolation from the two finest grids.

The converged value is 1.3198× 105. The Richardson extrapolation based on the two grids yields
the value 1.3183× 105, which is significantly closer to the converged one.

Another example considers a recent benchmark problem on oscillatory instability of convection
of air in a tall vertical cavity with Ax = 1 and Ay = 8 [8]. Solution of this benchmark problem
by the global Galerkin method is reported in Reference [11]. Here, in Figure 3, we illustrate
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Figure 4. Convergence of the critical Marangoni number and critical frequency for thermocapillary
convection of water (Pr= 6.78) in a cavity Ax = 2.5, Ay = 1.

convergence of the critical parameters for the finite volume method. In this case convergence of
the critical frequency is much faster than that of the critical Grashof number. The value of Grcr
is still within approximately 2% error on the finest grid used consisted of 150× 1200 nodes.
Again, the Richardson extrapolation based on the grids 140× 1120 and 150× 1200 yields the
value Grcr= 4.3097× 105, which is very close to the converged value 4.3126× 105 calculated in
Reference [11].

3.2. Thermocapillary convection flows

The benchmark-quality data on Marangoni–Bénard instability was reported in Reference [32] for
heating from below. It is rather surprising that a commonly accepted benchmark problem for
the thermocapillary convection in a rectangular cavity heated from the side was not formulated.
Here, for the benchmark purposes, we consider the two following problems. The first problem is
taken from the study [31] and deals with the thermocapillary convection of fluid with Pr= 6.78,
characteristic for water, in a rectangular cavity with Ax = 2.5 and Ay = 1. The second problem is
based on geometry of the benchmark problem [6] and considers the thermocapillary convection
of a low-Prandtl-number (Pr= 0.015) fluid in a cavity with Ax = 4 and Ay = 1.

In the case of the thermocapillary convection the x-velocity boundary conditions (4) and (5b)
are discontinuous at the corner points x = 0 and Ax and y= Ay . This means that the convergence
of the grid step Taylor series cannot be expected at least in the vicinity of the corner points,
so that the Richardson extrapolation cannot be applied here. The independent results on the
thermocapillary convection with which we can compare are also not very precise. Therefore,
we report the convergence of the critical numbers themselves without comparing them to any
independent result or their Richardson extrapolation. Together with the convergence results we
report the flow patterns and the patterns of the most unstable perturbations. The latter, to the best
of our knowledge, were never reported before.
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perturbation of temperature perturbation of pressure

Figure 5. Patterns of flow and most unstable perturbation at the critical Marangoni number
for thermocapillary convection of water (Pr= 6.78) in a cavity Ax = 2.5, Ay = 1.

The convergence of the critical parameters for the problem 8 is shown in Figure 4. It is seen that
the convergence is not yet completely established even for Nx = 2Ny = 540. Further grid refinement
was not possible because of computer memory restrictions. The finest result of Macr/Pr= 3640
is rather well compared with the result of Reference [31], which is 3575. At the same time the
comparison can be only qualitative since the critical frequency, as well as the perturbation patterns,
was not reported in Reference [31]. It is also seen (Figure 4) that there is a steep change in the
critical numbers for the number of grid points changing between Nx = 2Ny = 300 and 400. This
is explained by the qualitatively accurate resolution of the perturbation pattern, which is observed
only starting from Nx = 2Ny ≈ 360.

The flow patterns and the patterns of the most unstable perturbations for the problem 8 are
shown in Figure 5. It is seen that due to a relatively large Prandtl number the thermal boundary
layer is developed near the cold (left) vertical wall. There is also a steep temperature change
observed in the upper right corner of the cavity. These lead to large local temperature gradients,
which causes steep changes in the thermocapillary force. The latter can be the main reason for the
slow convergence observed.
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Figure 6. Convergence of the critical Marangoni number and critical frequency for thermocapillary
convection of low-Prandtl-number fluid (Pr= 0.015) in a cavity Ax = 4, Ay = 1.

The convergence for the problem 9 is illustrated in Figure 6. Beyond Nx = 4Ny = 300 grid
points the change of the critical parameters becomes slow (Figures 6(a) and (b)). However, as it
follows from the zoomed Figures 6(c) and (d) the convergence is not completely reached even at
Nx = 4Ny = 800. To validate the results we tried to carry out the stability calculations using the
global Galerkin method used in References [1–13]. However, with this method also we were not
able to establish a complete convergence. The best values obtained by both methods are compared
in Table I, which shows a good agreement. A good agreement is observed also in the patterns
of the most unstable perturbations obtained by the two methods. The perturbations are shown in
Figure 7. Steep maxima of the perturbation amplitudes observed is the main reason for the slow
convergence of the critical parameters. Since the instability in this problem sets in inside the bulk
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Figure 7. Patterns of flow and most unstable perturbation at the critical
Marangoni number for thermocapillary convection of low-Prandtl-number

fluid (Pr= 0.015) in a cavity Ax = 4, Ay = 1.

of the flow and not in a boundary layer its calculation requires a good global resolution. A usual
mesh stretching near the boundaries will not be helpful here. Because of these difficulties it is the
author’s opinion that this case can be a good modern benchmark problem.

3.3. Effect of the stretching

Since there is an infinite amount of stretching possibilities it is impossible to obtain a full answer
on the question which stretching is optimal for a certain problem. Here we study the follow-
ing stretching. The uniform grid defined in the nodes xi and y j is transformed into a stretched
one by

xi ← Ax

[
xi
Ax
− a sin

(
2�

xi
Ax

)]
, y j ← Ay

[
y j
Ay
− b sin

(
2�

y j
Ay

)]
(12)

After the transformation defined by (12) the grid becomes stretched near the boundaries.
The density of the stretching is defined by the parameters a and b which vary between 0
and 0.12.

The process of the adaptation of the parameters a and b to a certain problem is illustrated in
Tables III and IV. For problems 1 and 4 of convection in a square cavity we performed calculations
using Nx = Ny = 200 and varying a and b. We are looking for a combination of these two parameters
yielding the critical Grashof number, which is most close to the Richardson extrapolation based on
the uniform meshes with Nx = Ny = 440 and 450. Thus, the optimal parameters for the problem
1 are found to be a= b= 0.08 and a= 0.05 and b= 0.03 for the problem 4. These parameters are
shown in bold in Tables III and IV.
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Table III. Results for different stretching parameters for problem 1. N = Nx × Ny = 200.

a b Grcr 	cr/
√
Grcr

0 0 936 608 8.4161
0.01 0 937 043 8.4188
0.05 0 938 276 8.4269
0.07 0 638 536 8.4291
0.08 0 938 569 8.4296
0.09 0 938 536 8.4298
0.1 0 938 444 8.4297
0.11 0 938 289 8.4292
0.08 0.05 940 241 8.4405
0.08 0.07 940 495 8.4426
0.08 0.08 940 525 8.4432
0.08 0.09 940 491 8.4434
0.09 0.08 940 489 8.4434
0.07 0.08 940 494 8.4426

Richardson extrapolation from uniform grid 947 166 8.476715

Table IV. Results for different stretching parameters for problem 4. N = Nx × Ny = 200.

a b Grcr 	cr/
√
Grcr

0 0 0.27287 0.34615
0.01 0 0.26863 0.34672
0.02 0 0.26481 0.34709
0.03 0 0.26132 0.34729
0.04 0 0.25808 0.34731
0.05 0 0.25502 0.34718
0.06 0 0.25210 0.34689
0.05 0.01 0.25552 0.34675
0.05 0.02 0.25604 0.34636
0.05 0.03 0.25656 0.34602
0.05 0.04 0.25710 0.34572

Richardson’s extrapolation from uniform grid 0.2566354 0.3477536

Figures 8 and 9 illustrate the convergence of the critical parameters calculated for the optimal
values of a and b found. These results are compared with the results obtained using the uniform
grid and the grid with a very dense stretching defined by a= b= 0.12.

For the problem 1 (Figure 8) there is almost no difference between the stretching with a=
b= 0.08 or 0.12. The convergence is slightly faster for the optimized values of a and b equal to 0.08.
In the case of uniform grid the convergence is slower, especially for the critical frequency. At the
same time, at large values of Nx and Ny we observe that there is almost no difference between
different grids.
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Figure 9. Effect of the stretching on the convergence of the critical Grashof number and critical frequency
for problem 4. The subscript R stays for the Richardson extrapolation from the two finest uniform grids.

For the problem 4 (Figure 9) we observe much faster convergence of the critical Grashof number
for the grid with the optimized parameters a= 0.05 and b= 0.03. However, the convergence of the
critical frequency is fastest for the uniform grid, while the densely stretched grid with a= b= 0.12
shows a very slow convergence. This example shows that the stretching does not always speeds
up the convergence and that it is not enough to check the effect of the stretching for only one
characteristic parameter.
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4. CONCLUDING REMARKS

To summarize this study we emphasize once again the main conclusions made above. It is shown
that the critical parameters converge very slowly with the grid refinement. Therefore, attempts
to perform stability analysis on a coarse grid are expected to yield inaccurate and even wrong
results. Our estimation for the finite volume method is that a quantitatively correct stability result
can be expected starting from a grid having about 100 nodes in the shortest direction. This agrees
with the convergence studies performed in References [24–26]. Apparently, for the higher-order
methods the convergence can be achieved on coarser grids. However, higher-order schemes will
affect the sparseness of the Jacobian matrix, which can make the present approach ineffective.
A good candidate for further studies can be compact schemes described in Reference [33] and
references therein.

We argued that using the uniform grids and the Richardson extrapolation, one can achieve a
very good accuracy. It is shown also that the mesh stretching can speed up the convergence, as is
usually expected. At the same time the example in Figure 9 shows that the stretching effect can
be undesirable. One of the problems in using the stretching is the necessity to compare with an
independent data, since otherwise it is impossible to conclude whether the accuracy of calculations
is increased or decreased.

It is argued that the Arnoldi iterations can become faster if the iterative solvers are replaced by
the direct ones. This conclusion, however, depends on the sparseness of the Jacobian matrix and
can become wrong for higher-order methods for which the Jacobian matrix becomes significantly
denser. In the case of the Newton iteration it was also found that a direct solver yields rather
efficient and reliable computational process. The comparison with the approaches where exact and
inexact Newton methods are combined with the iterative solvers is yet to be done. Apparently, the
result of such a comparison will be problem dependent, as well as depend on a numerical method
used for solution of the whole problem. It can be additionally argued here that approach using the
direct solver is problem independent, and its CPU-time and memory consumption can be easily
estimated.

APPENDIX A

Here we give several examples on the convergence of Newton iteration-based steady solver, Arnoldi
eigensolver and the secant method used for calculation of the critical values. All the examples
here, except of the last one, are made for the Problem 2. Note, that for more effective calculations
the velocity and the time are scaled by Gr1/2.

Convergence of the Newton iterations is illustrated in Table AI. The residuals are calculated
as maxi [|dxi |/|xi |], where xi is a scalar variable and dxi is the correction calculated at a current
Newton iteration. For the critical value of Problem 2 calculated at 400× 400 grid, we examine
the convergence for initial guess interpolated from the solution on a coarser grid, as well as from
solutions at the same grid but for smaller Grashof numbers. Linear interpolation between four
grid points is used to map a solution from one grid to another one. The first three columns of
Table AI show that when the data is transferred from a coarser grid the Newton method converges
within three iterations. The convergence is slower when the initial guess is taken as a steady-state
calculated for a different Grashof number. Apparently the Newton method can diverge if the initial
guess is taken too far from solution. However, a graduate increase of the Grashof number allows
us to calculate steady-states for all parameters needed, as well as far above the critical value.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:485–506
DOI: 10.1002/fld



STABILITY OF CONVECTIVE FLOWS IN CAVITIES 503

Table AI. Convergence of residuals of the Newton iterations. Calculation of the steady-state flow at
Gr= 2.9× 106 for Problem 2 using grid 400× 400.

From grid From grid From grid From grid From grid
100× 100 200× 200 300× 300 400× 400 400× 400

Iteration Gr= 2.9× 106 Gr= 2.9× 106 Gr= 2.9× 106 Gr= 2.0× 106 Gr= 106

1 0.6715 0.6341 0.6338 0.8399× 10−3 0.1986× 10−2
2 0.4260× 10−4 0.6341× 10−5 0.6338× 10−5 0.2417× 10−3 0.1194× 10−2
3 0.7675× 10−8 0.2111× 10−9 0.2378× 10−9 0.9965× 10−6 0.8729× 10−4
4 0.1329× 10−8 0.1085× 10−6
5 0.4457× 10−10

Table AII. Convergence of the secant method iterations used for calculation of the critical Grashof number.
Problem 2, grid 400× 400.

Iteration Gr max[Real(�)] Gr max[Real(�)] Gr max[Real(�)]
0 2× 106 −0.10416 2.4× 106 −0.056010 2.8× 106 −0.010912
1 2.002× 106 −0.10345 2 402 400 −0.055713 2 802 800 −0.010627
2 4 896 668 +0.12144 2 853 081 −0.5554× 10−2 2 909 544 −0.7224× 10−5
3 3 337 415 +0.037301 2 909 528 −0.8937× 10−5 2 909 619 −0.4498× 10−7
4 2 646 144 −0.027247 2 909 534 −0.8212× 10−5
5 2 937 948 0.027250 2 909 619 −0.4968× 10−7
6 2 911 418 0.1742× 10−3
7 2 909 607 −0.1299× 10−5
8 2 909 619 −0.1772× 10−7

Table AII shows the convergence of the secant method for three different starting values
of the Grashof number. It is seen that the closer is the starting value to the critical one, i.e.
Grcr= 2.9096× 106 in the example considered, the smaller is the number of secant iterations
needed to calculate the critical value. The critical values shown in Table AII are calculated to within
five correct decimal digits, for which we needed nine iterations starting from Gr = 2.0× 106, six
iterations starting from Gr = 2.4× 106, and four iterations starting from Gr = 2.8× 106. Appar-
ently, if the starting value is chosen too far from the critical one the number of secant iterations
can be even larger. The whole secant iteration process can diverge if wrong leading eigenvalue
is selected at the starting iteration. In the convergence studies reported above the starting value
can be chosen very close to the critical one after the convergence to within 2 decimal digits is
achieved. Thus 4–6 secant iterations are needed to calculate the critical values, as described above.
When the parametric stability studies are performed (see, e.g. References [9, 10, 14, 15]), the crit-
ical values vary continuously with variation of other parameters, which allows one to choose the
starting values close to the critical ones. Thus, at the continuous parts of the neutral stability curves
4–6 secant iterations usually are sufficient. Larger number of iterations is needed near the points
corresponding to the bifurcations with higher co-dimension, where different leading eigenvalues
cross the real axis at close values of governing parameters.
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Figure AI. Computer memory and CPU time consumed for LU-decomposition of the real Jacobian matrix
needed for the Newton iteration, the Jacobian matrix with complex shift needed for the shift-and-invert

Arnoldi iteration and the Arnoldi eigensolver. The estimation is done for Problem 2.

The computer memory and CPU time required for the LU-decomposition (using the MUMPS
code) of the real Jacobian matrix needed for the Newton iteration and the same Jacobian matrix
with a complex shift used for the shift-and invert Arnoldi iteration together with the CPU time
consumed by the Arnoldi eigensolvers (using the ARPACK code) are shown in Figure AI. The
memory needed for the LU-decomposition scales as N 2.3, where N is the number of grid points in
one spatial direction. The CPU times have no such a clear scaling. Their change can be estimated
as N 2.6, N 3, N 2, for the real Jacobian, Jacobian with a complex shift and Arnoldi eigensolvers,
respectively. For all the problems considered the number of Arnoldi iterations varied between 6000
and 7000 and was almost independent on grid refinement.

Comparison with other numerical approaches to direct steady-state calculations and stability
analysis should be done for the same physical problem, same numerical method applied to the
initial problem, and preferably for the same or similar computers. Such a comparison is beyond
the scope of the present study. Here we can report a comparison with the results of Reference [25],
where problem 7 was solved by the finite element method in the Galerkin least squares formulation.
The finest grid reported was 256× 688. This leads to 708 292 degrees of freedom, which is exactly
the same as for the 256× 688 grid finite volume method used in the present study. The time needed
for four Newton iterations, which in Reference [25] and here was enough for the convergence,
was reported in Reference [25] to be 3.5 h with the use of 160 processors. The time consumed
in the present work on a single Itanium-2 processor was 192 s. The time needed for one run of
the eigenvalues calculation was reported in Reference [25] to be 4 h on 128 processors for an
Arnoldi space of size 150 and 27 leading eigenvalues converged. For the same parameters of
the Arnoldi method the present approach consumed 750 s for Arnoldi iterations and 140 s for the
LU-decomposition on the single Itanium-2 processor.
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21. Gadoin E, Le Quéré P, Daube O. A general methodology for investigating flow instabilities in complex geometries:
application to natural convection in enclosures. International Journal for Numerical Methods in Fluids 2001;
37:175–208.

22. Hwang FN, Cai XC. A parallel additive Scwartz preconditioned inexact Newton algorithm for incompressible
Navier–Stokes equations. Journal of Computational Physics 2005; 204:666–691.

23. Sanchez J, Marques F, Lopez JM. A continuation and bifurcation technique for Navier–Stokes equations. Journal
of Computational Physics 2002; 180:82–102.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:485–506
DOI: 10.1002/fld



506 A. Y. GELFGAT

24. Lechoucq RB, Salinger AG. Large-scale eigenvalue calculations for stability analysis of steady flows on massively
parallel computers. International Journal for Numerical Methods in Fluids 2001; 36:309–327.

25. Salinger AG, Lechoucq RB, Pawlowski RP, Shadid JN. Computational bifurcation and stability studies of the
8:1 thermal cavity problem. International Journal for Numerical Methods in Fluids 2002; 40:1059–1073.

26. Burroughs EA, Romero LA, Lechouq RB, Salinger AG. Linear stability of flow in a differentially heated cavity
via large-scale eigenvalue calculations. International Journal of Numerical Methods for Heat and Fluid Flow
2004; 14:803–822.

27. van der Vorst HA. Iterative Krylov Methods for Large Linear Systems. Cambridge University Press: Cambridge,
2003.

28. Onur O, Eyi S. Effects of the Jacobian evaluation on Newton’s solution of the Euler equations. International
Journal for Numerical Methods in Fluids 2005; 49:211–231.

29. Lechouq RB, Sorensen DC, Yang C. ARPACK Users’ Guide: Solution of Large Scale Eigenvalue Problems with
Implicitly Restarted Arnoldi Methods. SIAM: Philadelphia, 1998.

30. Patankar SV. Numerical Heat Transfer and Fluid Flow. Hemisphere/McGraw-Hill: New York, 1980.
31. Xu J, Zebib A. Oscillatory two- and three-dimensional thermocapillary convection. Journal of Fluid Mechanics

1998; 364:187–209.
32. Cliffe KA, Tavener SJ. Marangoni-Bénard with a deformable free surface. Journal of Computational Physics

1998; 145:193–227.
33. Pereira JMC, Kobayashi MH, Pereira JCF. A fourth-order accurate finite-volume compact method for the

incompressible Navier–Stokes solutions. Journal of Computational Physics 2001; 167:217–243.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:485–506
DOI: 10.1002/fld


